Hücre İçi Kalsiyum Sinyali, Apoptoz ve Kanser Progresyonunda Kalsiyum Kanallarının (Voc, Trp ve Soc Kanalları) Rolü

Nihal Çiftçi

Özet


Özet

Hücre içi Ca+2 sinyali kardiyovasküler ve nörolojik hastalıklarla ve daha pek çok hastalıkla ilişkilidir. Ca+2 giriş kanallarının değişmiş ekspresyonları da meme, kolon, prostat, over, beyin gibi çeşitli kanser tipleri ile ilşkilendirilmektedir. Hücre içi Ca+2 artışları pek çok hücresel proseste önemli iken, kanserli bir olguda hücre proliferasyonu ve migrasyonu dahil olmak üzere tümör progresyonu ile ilişkili olan pek çok proses için de önemli ve etkilidir. Kanser ve kanser kökenli olmayan hücreleri karşılaştıran çalışmalar, kalsiyum kanal ailesinin (Voc, Trp ve Soc kanalları) bazı üyelerinin aracılık ettiği Ca+2-aracılı değişiklikleri ortaya koymaktadır. Kanser progresyonunda kalsiyum kanallarının değişmiş ekspresyonunun rol oynadığı dikkat çekmektedir. Bu derlemede kanser hücrelerinin plazma zarında bulunan kalsiyum kanallarının protein ekspresyonlarındaki değişiklikler ve sonuçları son yapılan çalışmalarla ifade edilmektedir.

Anahtar Kelimeler: Kalsiyum iyonu (Ca+2), kalsiyum kanalları, kanser

Abstract

Intracellular calcium signaling is associated with cardiovascular and neurological diseases and many other diseases. Altered expression of calcium influx channels is associated with various types of cancer including breast, colon, prostate, ovary, brain. While important for regulating many normal, cellular processes, increases in intracellular Ca+2 have been implicated in a variety of processes associated with tumour progression, including breast cancer cell migration and proliferation. Studies comparing cancer tissues with noncancerous tissues have revealed changes in calcium signaling mediated by some members of the calcium channel family (voc, trp and soc channels). As we pointed out, altered expression of calcium channels plays a role in cancer progression. This review focuses on the recent studies regarding the differences in protein expression of calcium channels found in plasma membrane of cancer cells.

Key words: Calcium ion (Ca+2), calcium channels, cancer


Tam Metin:

PDF

Referanslar


Kaynaklar

Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK. A review on role of essential trace elements in health and disease. Journal of Dr. NTR University of Health Sciences. 2015; 4 (2): 75-85.

Clapham DE.Calcium Signaling. Cell. 2007;80 (2):259-268

Bickler PE, Fahlman CS. Moderate increases in intracellular calcium activate neuroprotective signals in hippocampal neurons. Neuroscience. 2004;127(3):673-83.

Flynn DC.Adaptor proteins. Oncogene. 2001;20(44):6270-72.

Brini and E. Carafoli. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol. 2011;3(2): a004168.

Petegem V and Minor DL Jr. The structural biology of voltage-gated calcium channel function and regulation. Biochem Soc Trans. 2006; 34(5):887–893.

Buchanan PJ, McCloskey KD. CaV channels and cancer: canonical functions indicate benefits of repurposed drugs as cancer therapeutics. Eur Biophys J. 2016;45(7):621-633.

Capiod T. Cell proliferation, calcium influx and calcium channels. Biochimie. 2011;93(12):2075-9.

Brini M, Calì T, Ottolini D, Carafoli E. Intracellular calcium homeostasis and signaling. Met Ions Life Sci. 2013;12:119-68.

Nowycky MC, Thomas AP. Intracellular calcium signaling Journal of Cell Science. 2002; 115:3715-3716.

Fernandez RA, Sundivakkam P, Smith KA, Zeifman AS, et al. Pathogenic Role of Store-Operated and Receptor-Operated Ca2+ Channels in Pulmonary Arterial Hypertension. Journal of Signal Transduction.2012;2012:951497.

Kang JH. Protein Kinase C (PKC) Isozymes and Cancer. New Journal of Science. 2014; 2014: 1-36

Nowycky MC, Thomas AP. Intracellular calcium signaling. Journal of Cell Science. 2002;115:3715-3716.

Salido GM, Sage SO, Rosado JA. TRPC channels and store-operated Ca2+ entry. Biochim. Biophys. Acta. 2009;1793:223–230.

Frischauf I, Fahrner M, Jardín I, Romanin C. The STIM1: Orai Interaction. Adv Exp Med Biol. 2016;898:25-46.

Feske S, Skolnik EY, Prakriya M. Ion channels in lymphocyte function and immunity. Nat Rev Immunol. 2012;12:532-47.

Choi S, Maleth J, Jha A, Lee KP, Kim MS, So I, Ahuja M, Muallem S. The TRPCs-STIM1-Orai interaction. Handb Exp Pharmacol.2014;223:1035-54.

Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A. 2008;105(8):2895-900.

Minke B, Cook B. TRP Channel Proteins and Signal Transduction. Physiol. Rev. 2002;82(2):429-472.)

Giorgi C, Baldassari F, Bononi A, Bonora M, Marchi ED, Marchi S, Missiroli S, et al. Mitochondrial Ca+2 and apoptosis. Cell Calcium. 2012;52(1):36-43

Marchi S. and Pinton P. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol. 2014; 592(5):829–39.

Wei A.C., Liu T., Winslow R. L., O'Rourke B. Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering. J. Gen. Physiol. 2012; 139:465–478.

Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:1–14.

Dai H, Meng XW, Kaufmann SH. BCL2 Family, Mitochondrial Apoptosis, and Beyond. Cancer Transl Med. 2016;2(1):7–20

Ohkubo T, Yamazaki J. T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. International Journal of Oncology. 2012; 41: 267-275

Hao J, Bao X, Jin B, Wang X, Mao Z, et al. Ca2+ channel subunit α1D promotes proliferation and migration of endometrial cancer cells mediated by 17β-estradiol via the G protein-coupled estrogen receptor. FASEB J. 2015;29:2883–2893.

Pera E, Kaemmerer E, Milevskiy MJG, et al. The voltage gated Ca2+-channel Cav3.2 and therapeutic responses in breast cancer. Cancer Cell Int 2016;16(24):15

Vanoevelen J, Dode L, Van Baelen K, et al. The secretory pathway Ca2+/Mn2+-ATPase 2 is a golgi-localized pump with high affinity for Ca2+ ions. J Biol Chem. 2005;280:22800-22808..

Feng M, Grice D, Faddy H, Nguyen N, Leitch S, Wang Y, Muend S, Kenny P, Sukumar S, Roberts-Thomson SJ, Monteith GR, Rao R. Store-Independent Activation of Orai1 by SPCA2 in Mammary Tumors. Cell. 2010;143: 84-98.

Grice DM, Vetter I, Faddy HM, Kenny PA, Roberts-Thomson SJ, Monteith GR. Golgi calcium pump secretory pathway calcium ATPase 1 (SPCA1) is a key regulator of insulin-like growth factor receptor (IGF1R) processing in the basal-like breast cancer cell line MDA-MB-231. J Biol Chem. 2010; ;285(48):37458-66.

Faouzi M, Hague F, Potier M, Ahidouch A, Sevestre H, Ouadid-Ahidouch H. Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J. Cell Physiol. 2011; 226:542–551.

Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–1073.).

Wang JY, Chen BK, Wang YS, Tsai YT, Chen WC, Chang WC, et al. Involvement of store operated calcium signaling in EGF-mediated COX-2 gene activation in cancer cells. Cell Signal. 2012; 24:162–169. )

Huang WC, Chai CY, Chen WC, Hou MF, Wang YS, Chiu YC, et al. Histamine regulates cyclooxygenase 2 gene activation through Orai1-mediated NFkappaB activation in lung cancer cells. Cell Calcium. 2011; 50:27–35.)

Wang JY, Sun J, Huang MY, Wang YS, Hou MF, Sun Y, He H, Krish-na N, Chiu SJ, Lin S, Yang S, Chang WC. STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression. Oncogene. 2015;34:4358–4367

Gkika D, Flourakis M, Lemonnier L, Prevarskaya N. PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression. Oncogene. 2010;29(32):4611-6.

Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen'kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skryma R, Prevarskaya N. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res.2006;66(4):2038-47.

Lehen'kyi V, Flourakis M, Skryma R, Prevarskaya N. TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene. 2007;26(52):7380-5.

Fiorio Pla A, Genova T, Pupo E, Tomatis C, Genazzani A, Zaninetti R, Munaron L. Multiple roles of protein kinase a in arachidonic acid-mediated Ca2+ entry and tumor-derived human endothelial cell migration. Mol Cancer Res. 2010;8(11):1466-76.

Fiorio Pla A, Grange C, Antoniotti S, Tomatis C, Merlino A, Bussolati B, Munaron L. Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis. Mol Cancer Res. 2008;6(4):535-45.

Fiorio Pla A, Ong HL, Cheng KT, Brossa A, Bussolati B, Lockwich T, Paria B, Munaron L, Ambudkar IS. TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene.2012;31(2):200-12.


Refback'ler

  • Şu halde refbacks yoktur.